
Graph Theory

Connectivity

CONNECTIVITY

2

CONNECTIVITY

 Separating Sets

3

• A cut, vertex cut, or separating set of a connected graph 𝐺 is a set of

vertices whose removal renders 𝐺 disconnected.

o A set 𝑉’ ⊆ V is a set of vertices (vertex cut set) if the graph 𝐺 − 𝑉’ is

not connected, without the existence of a subset of 𝑉’ with the same

property.

vertex cut set, vertex separating set.

CONNECTIVITY

 Separating Sets

4

• A cut, vertex cut, or separating set of a connected graph 𝐺 is a set of

vertices whose removal renders 𝐺 disconnected.

o Vertex Connectivity 𝑉𝐶(𝐺) of a graph 𝐺 is minimum 𝑘 = | 𝑉 ′|, so
that graph 𝐺 has a set 𝑉′ with 𝑘 vertex connectivity.

vertex cut set, vertex separating set.

CONNECTIVITY

 Separating Sets

5

• A cut, vertex cut, or separating set of a connected graph 𝐺 is a set of

vertices whose removal renders 𝐺 disconnected.

o A graph 𝐺 is called 𝒌-connected if 𝑉𝐶 𝐺 ≥ 𝑘, while it means that the

deletion of 𝑘 vertices results to a disconnected graph.

vertex cut set, vertex separating set.

(1-connected) (3-connected)

CONNECTIVITY

 Separating Sets

6

• A cut, vertex cut, or separating set of a connected graph 𝐺 is a set of

vertices whose removal renders 𝐺 disconnected.

o Any graph 𝐺 is said to be 𝑘-connected if it contains at least 𝑘 + 1
vertices, but does not contain a set of 𝑘 − 1 vertices whose removal

disconnects the graph; and 𝜅(𝐺) is defined as the largest k such that 𝐺 is

𝑘-connected.

o A vertex cut for two vertices 𝑢 and 𝑣 is a set of vertices whose removal

from the graph disconnects 𝑢 and 𝑣.

 The local connectivity 𝜅(𝑢, 𝑣) is the size of a smallest vertex cut

separating u and v.

 Local connectivity is symmetric for undirected graphs; that is,

𝜅(𝑢, 𝑣) = 𝜅(𝑣, 𝑢).

CONNECTIVITY

 Separating Sets

7

• A cut, vertex cut, or separating set of a connected graph 𝐺 is a set of

vertices whose removal renders 𝐺 disconnected.

• Theorem 1:

A vertex 𝑣 of a tree is “cut-vertex” if and only if 𝑑(𝑣) > 1

o If 𝑑(𝑣) = 0, then 𝐺 = 𝐾1 and v is not a cut vertex.

o If 𝑑(𝑣) = 1 , then 𝐺 − 𝑣 is a tree, where the number of the total

components of 𝐺 − 𝑣 equals the number of components of 𝐺, i.e., 1,

and hence v is not a vertex cut.

o If 𝑑(𝑣) > 1, let 𝑥, 𝑦 two adjacent vertices of 𝑣,

then the path 𝑃(𝑥, 𝑣, 𝑦) is the only path that

connects vertices 𝑥, 𝑦, which means that there

does not exist path between x and y in the

graph 𝐺 − 𝑣, and hence 𝑣 is a cut vertex.

CONNECTIVITY

 Separating Sets

8

• A cut, vertex cut, or separating set of a connected graph 𝐺 is a set of

vertices whose removal renders 𝐺 disconnected.

• Theorem 1:

A vertex 𝑣 of a tree is “cut-vertex” if and only if 𝑑(𝑣) > 1

Corollary:

Any connected graph has at least 2 vertices that are not “cut vertices”.

o The graph 𝐺 has at least a connected tree 𝑇, which by the theorem it has

two vertices of degree 1.

o Let 𝑣: 𝑑(𝑣) = 1, then 𝑇 − 𝑣 is composed by one component.

o Since 𝑇 − 𝑣 is a connected sub-tree of 𝐺 − 𝑣, then the number of the

components of 𝐺 − 𝑣 = 1 . Hence, vertex 𝑣 is not a cut vertex.

Since there exist at least two vertices of degree 1 in tree 𝑇 it implies that

there exist two vertices that are not cut vertices in graph 𝐺.

CONNECTIVITY

 Separating Sets

9

• A cut, vertex cut, or separating set of a connected graph 𝐺 is a set of

vertices whose removal renders 𝐺 disconnected.

• Theorem 2:

A vertex 𝑣 of a graph 𝐺 is cut vertex iff there exist two vertices, let 𝑢,𝑤
(𝑢,𝑤 ≠ 𝑣), such that vertex 𝑣 to exist in every path from 𝑢 to 𝑤.

(⇒) Let that 𝑣 is a cut vertex in graph 𝐺. If 𝑢 and 𝑤 are vertices in different

components of graph 𝐺 − 𝑣, then there do not exist paths from 𝑢 to 𝑤 in

graph 𝐺 − 𝑣. But graph 𝐺 is connected, and hence there exist such paths in

𝐺. Hence, vertex 𝑣 exists in each of such paths.

(⇐) Let that there exist vertices 𝑢, 𝑤 in graph 𝐺 such that vertex 𝑣 belongs

to each path from 𝑢 to 𝑤. Hence, there do not exist such paths in graph

𝐺 − 𝑣 and thus graph 𝐺 − 𝑣 is not connected. Hence, vertex 𝑣 is cut vertex.

CONNECTIVITY

 Separating Sets

10

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

vertex cut set vertex separating set

CONNECTIVITY

 Separating Sets

11

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

o Edge Connectivity of a graph 𝐺 is the minimum 𝑘 = | 𝐸 ‘|, so that

graph 𝐺 has a set of 𝑘 cut edges. The edge connectivity of a graph

𝐺 defines the minimum 𝑘 = | 𝐸΄|, so that 𝐺 is stays connected after

deletion 𝑘 − 1 edges.

o A graph is called 𝒌-connected to the edges if 𝐸𝐶 𝐺 ≥ 𝑘

o Given a set of vertices 𝑥, 𝑦, for which there exist at least one path that

connects them, we define as local edge connectivity 𝜆(𝑢, 𝑣) the size

of the smallest set of cut edges such that no longer exist path between

the vertices. For directed graphs it holds that local connectivity is

symmetrical, i.e., 𝜆 𝑢, 𝑣 = 𝜆 𝑣, 𝑢 .

Additionally, it holds that 𝐸𝐶 𝐺 ≤ 𝜆 𝑢, 𝑣 ∀ 𝑢, 𝑣 ∈ 𝑉(𝐺)

CONNECTIVITY

 Separating Sets

12

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

• Theorem 3:

An edge 𝑒 is a cut edge if and only if they exist 2 nodes 𝑢 and 𝑤
such that the edge 𝑒 belongs to each path from node 𝑢 to 𝑤.

(⇒) Let that 𝑒 is a cut edge in graph 𝐺 . Then graph 𝐺 − 𝑒 is not

connected. If 𝑢,𝑤 are two vertices in different components of 𝐺 − 𝑒, then

there do not exist paths from 𝑢 to 𝑤 in this graph. However, since 𝐺 is

connected there do exist paths from 𝑢 to 𝑤 in this graph.

(⇐) If there exist vertices 𝑢 and 𝑤 such that edge 𝑒 belongs to each path

from 𝑢 to 𝑤 in the graph 𝐺, then in graph 𝐺 − 𝑒 there do not exist paths

from 𝑢 to 𝑤. Thus, 𝐺 − 𝑒 is not connected and edge 𝑒 is a cut edge.

CONNECTIVITY

 Separating Sets

13

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

• Theorem 4:

An edge 𝑒 of a graph 𝐺 is cut edge iff it is not contained in a cycle.

(⇒) Let that 𝑒 is a cut edge of 𝐺.

Since the number of components of 𝐺 − 𝑒 is greater than the number of

components of 𝐺, there exist vertices 𝑢 and 𝑣 that are connected in graph

𝐺 but are not connected in 𝐺 − 𝑒.

Hence, there exist a path 𝑃 in 𝐺 , from vertex 𝑢 to vertex 𝑣, crossing edge

𝑒. Let us assume that vertices 𝑥, 𝑦 are adjacent to edge 𝑒, and that

𝑥 precedes 𝑦 in 𝑃. In graph 𝐺 − 𝑒 vertex 𝑢 is connected with vertex 𝑥,

and vertex 𝑦 is connected to vertex 𝑣, through 𝑃.

If edge 𝑒 belong to a cycle 𝐶 , then vertices 𝑥, 𝑦 would be connected

through path 𝐶 − 𝑒 in graph 𝐺 − 𝑒. Thus, vertices 𝑢, 𝑣 could be connected

with a path in graph 𝐺 − 𝑒, which is a contradiction.

CONNECTIVITY

 Separating Sets

14

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

• Theorem 4:

An edge 𝑒 of a graph G is cut edge iff it is not contained in a cycle.

(⇐) Let us assume that edge 𝑒 = (𝑥, 𝑦) is not a cut edge of 𝐺.

Hence, the number of components of 𝐺 equals the number of

components in 𝐺 − 𝑒.

Since in graph 𝐺 there exists a path from vertex 𝑥 to vertex 𝑦, it is implied

that vertices 𝑥 and 𝑦 belong to the same component in both 𝐺 and 𝐺 − 𝑒.

Thus in graph 𝐺 − 𝑒 there exist a path 𝑃 from vertex 𝑥 to vertex 𝑦, but

then edge 𝑒 belongs to the cycle 𝑃 + 𝑒 of 𝐺.

CONNECTIVITY

 Separating Sets

15

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

• Theorem 5:

In every graph 𝐺 = (𝑉, 𝐸) it holds that 𝑉𝐶 𝐺 ≤ 𝐸𝐶 𝐺 ≤ 𝑑(𝐺).

o For the right inequity:

 If the graph 𝐺 is not connected, then it holds 𝐸𝐶(𝐺) = 0.

 If the graph 𝐺 is connected, then it can be disconnected by

eliminating the edges adjacent to the vertex with the minimum

degree.

 Hence, in any case, the right inequity is true.

CONNECTIVITY

 Separating Sets

16

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

• Theorem 5:

In every graph 𝐺 = (𝑉, 𝐸) it holds that 𝑉𝐶 𝐺 ≤ 𝐸𝐶 𝐺 ≤ 𝑑(𝐺).

o For the left inequity:

 If the graph 𝐺 is not connected, then it holds 𝑉𝐺(𝐺) = 𝐸𝐶(𝐺) = 0.
 If the graph 𝐺 is connected, having one bridge, then it holds

𝐸𝐶(𝐺) = 1 = 𝑉𝐶(𝐺), either because it holds 𝐺 = 𝐾2 or because

𝐺 is connected and contains cut edges.

 If 𝐸𝐶 𝐺 ≥ 2, then the bridge is edge 𝑒 = (𝑢, 𝑣). For the rest of the

edges we select a vertex ≠ 𝑢, 𝑣 and are deleted.
 If the remaining graph is not connected, then it holds 𝑉𝐶(𝐺) < 𝐸𝐶(𝐺).
 If the remaining graph is connected, then it contains a bridge 𝑒, and hence

the deletion of either 𝑢 or 𝑣 makes the graph disconnected.

In each of the cases above, holds the left inequity.

CONNECTIVITY

 Separating Sets

17

• Similarly, we define edge cut set, or, edge separating set, for the graph

𝐺 = (𝑉, 𝐸) as the set 𝐸’ ⊆ 𝐸 that causes the graph 𝐺 − 𝐸’ to be

disconnected, without the existence of a subset of this set with the same

property.

• Theorem 6 (Chartrand & Harary, 1968):

Let the graph 𝐺, of order 𝑛, and an integer 𝑙, where 1 ≤ l ≤ 𝑛 − 1.

If it holds that 𝑑 𝐺 ≥ (𝑛 + 𝑙 − 2)/2, then graph 𝐺 is 𝑙-connected.

o If 𝐺 = 𝐾𝑛, then 𝐺 is 𝑙-connected.

o Let as assume that 𝐺 is not 𝑙-connected

 In that case there exists a set 𝑆 of cut edges: |𝑆| = 𝑘 < 𝑙.
 Let that 𝐺1 is the component of subgraph 𝐺 − 𝑆 , with the

minimum order. Since the subgraph 𝐺 − 𝑆 is of order 𝑛 − 𝑘, the

order of 𝐺1 is at most (𝑛 − 𝑘)/2.
 If 𝑣 is vertex of 𝐺1, then it can be adjacent to other vertices

of 𝐺1 and the vertices of 𝑆 , and it holds that:

𝑑 𝑣 ≤ 𝑘 +
𝑛−𝑘

2
− 1 =

𝑛+𝑘−2

2
<

𝑛+𝑙−2

2

CONNECTIVITY

 Graph Blocks

18

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• Block of a graph 𝐺 is a subgraph of 𝐺 that tis 2-connected, having the

maximum possible number of vertices.

• Each graph equals the union of its blocks.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

CONNECTIVITY

 Graph Blocks

19

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

CONNECTIVITY

 Graph Blocks

20

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇒) If any 2 vertices of 𝐺 are connected by 2 internally disjoint paths,

then 𝐺 is connected and has no set of one cut edge.

Thus 𝐺 is 2-connected.

CONNECTIVITY

 Graph Blocks

21

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇐) Let that 𝐺 is 2 -connected. Based on the 𝑑𝑖𝑠𝑡(𝑢, 𝑣) (let that

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = 1) between any arbitrary vertices 𝑢 and 𝑣 we will inductively

prove that these vertices are connected by 2 internally disjoint paths.

CONNECTIVITY

 Graph Blocks

22

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇐) Let that 𝐺 is 2 -connected. Based on the 𝑑𝑖𝑠𝑡(𝑢, 𝑣) (let that

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = 1) between any arbitrary vertices 𝑢 and 𝑣 we will inductively

prove that these vertices are connected by 2 internally disjoint paths.

o Since 𝐺 is connected it is implied that edge (𝑢, 𝑣) is not a cut edge, and

based on the Theorem 4 it belongs to a cycle, and thus vertices 𝑢 and

𝑣 are connected by 2 internally disjoint paths.

𝒖
𝒗

CONNECTIVITY

 Graph Blocks

23

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇐) Let that 𝐺 is 2 -connected. Based on the 𝑑𝑖𝑠𝑡(𝑢, 𝑣) (let that

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = 1) between any arbitrary vertices 𝑢 and 𝑣 we will inductively

prove that these vertices are connected by 2 internally disjoint paths.

o Let that the theorem holds for any vertices of distance less than 𝑘 and

let that 𝑑𝑖𝑠𝑡 𝑢, 𝑣 = 𝑘 ≥ 2. Let us assume the path between 𝑢 and

𝑣 of length 𝑘 and let that 𝑤 precedes 𝑣 in this path.

𝒖
𝒘

𝒗

CONNECTIVITY

 Graph Blocks

24

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇐) Let that 𝐺 is 2 -connected. Based on the 𝑑𝑖𝑠𝑡(𝑢, 𝑣) (let that

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = 1) between any arbitrary vertices 𝑢 and 𝑣 we will inductively

prove that these vertices are connected by 2 internally disjoint paths.

o Since, based on the induction assumption, 𝑑𝑖𝑠𝑡(𝑢, 𝑤) = 𝑘 − 1, it is

implied that there exist 2 internally disjoint paths 𝑃 and 𝑄 between the

vertices 𝑢 and 𝑤.

𝒖
𝒘

𝒗

𝑸

𝑷

CONNECTIVITY

 Graph Blocks

25

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇐) Let that 𝐺 is 2 -connected. Based on the 𝑑𝑖𝑠𝑡(𝑢, 𝑣) (let that

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = 1) between any arbitrary vertices 𝑢 and 𝑣 we will inductively

prove that these vertices are connected by 2 internally disjoint paths.

o Since, 𝐺 is 2-connected it is implied that 𝐺 − 𝑤 is also connected and

contains a path 𝑃’ from vertex 𝑢 to vertex 𝑣.

𝒖
𝒘 𝒗𝑸

𝑷 𝑷′

CONNECTIVITY

 Graph Blocks

26

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇐) Let that 𝐺 is 2 -connected. Based on the 𝑑𝑖𝑠𝑡(𝑢, 𝑣) (let that

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = 1) between any arbitrary vertices 𝑢 and 𝑣 we will inductively

prove that these vertices are connected by 2 internally disjoint paths.

o Let that 𝑥 is the last vertex in 𝑃’ that also exists in 𝑃 ∪ 𝑄.

o Since 𝑢 exists in 𝑃 ∪ Q, there exists such a vertex without excluding the

possibility of 𝑥 = 𝑢.

𝒖
𝒘 𝒗𝑸

𝑷 𝑷′𝒙

CONNECTIVITY

 Graph Blocks

27

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 7 (Whitney, 1932):

A graph 𝐺 of order 𝑛 ≥ 3 is 2-connected iff any two of its vertices are

connected by at least 2 internally disjoint paths.

(⇐) Let that 𝐺 is 2 -connected. Based on the 𝑑𝑖𝑠𝑡(𝑢, 𝑣) (let that

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = 1) between any arbitrary vertices 𝑢 and 𝑣 we will inductively

prove that these vertices are connected by 2 internally disjoint paths.

o Without loss of generality, 𝑥 ∈ 𝑃.
o Thus graph 𝐺 has 2 internally disjoint paths where the one is composed

by the part of 𝑃 from 𝑢 to 𝑥 including the part of 𝑃’ from 𝑥 to 𝑣, while

the other is composed by the path 𝑄 and the path from 𝑤 to 𝑣.

𝒖 𝒘 𝒗

𝒙

𝑸

𝑷 𝑷′

CONNECTIVITY

 Graph Blocks

28

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Corollary:

If a graph 𝐺 is 2-connected, then any two of its vertices belong to a cycle.

• Corollary:

If a graph 𝐺 consists of a block with 𝑛 ≥ 3, then any two of its edges

belong to a cycle.

• Theorem 8 (Menger, 1927):

The maximum number of internally disjoint paths from a vertex 𝑢 to a

vertex 𝑣 of a connected graph 𝐺 equals the minimum number of vertices

separating 𝑢 and 𝑣.

CONNECTIVITY

 Graph Blocks

29

• A graph that has no cut vertices is called biconnected, or non-separable,

or that this graph is composed by a Block, or a bicomponent.

• We define as internally disjoint paths two paths, let 𝑃1 and 𝑃2, that have

common endpoints the vertices 𝑢 and 𝑣, but have no other vertices in

common, i.e., it holds that: 𝑉 𝑃1 ∩ V(𝑃2) = {𝑢, 𝑣}.

• Theorem 9:

A graph 𝐺 is 𝑘-connected iff all pairs of vertices are connected by at least

𝑘 internally disjoint paths.

• Corollary (Menger’s Theorem over edges):

The maximum number of internally disjoint paths from a vertex 𝑢 to a

vertex 𝑣 of a connected graph 𝐺 equals the minimum number of edges

separating 𝑢 and 𝑣.

• Corollary:

A graph 𝐺 is 𝑘-connected with respect to its edges iff all the pairs of

vertices are connected by at least 𝑘 internally disjoint paths.

CONNECTIVITY

 Discovering Graph Blocks

30

• In order to discover the blocks in a graph it is adequate to identify the cut

vertices as follows:

1) If the vertex 𝑣 is a cut vertex and it is the root in a DFS tree, then 𝑣
should have more than one child.

2) If the vertex 𝑣 is a cut vertex and it is not root in a DFS tree, then must

𝑣 have a child 𝑠, such that some descendant of 𝑠 (including 𝑠) to be

connected to an ancestor of 𝑣 through at most one back-edge.

o Moreover, for each vertex 𝑣, except 𝑑(𝑣), we define an additional

variable, 𝑙(𝑣) (i.e., lowpoint), which denotes the minimum inscription

from 𝑑𝑓𝑖(𝑣) and 𝑑𝑓𝑖(𝑠), where 𝑠 is either descendant of 𝑣 through

one or more tree edges, or ancestor of 𝑣 through at most one back-

edge, which connects this ancestor with a descendant of 𝑣.

The parameter 𝑙(𝑣) (calculated recursively) is the minimum of :

1. 𝑑𝑓𝑖 (𝑣) (vertex inscription),

2. 𝑙(𝑠), where s is a child of vertex 𝑣,
3. 𝑑𝑓𝑖(𝑤) (vertex inscription), where (𝑣, 𝑤) is the back-edge of

vertex 𝑣

CONNECTIVITY

 Discovering Graph Blocks

31

• In order to discover the blocks in a graph it is adequate to identify the cut

vertices as follows:

1) If the vertex 𝑣 is a cut vertex and it is the root in a DFS tree, then 𝑣
should have more than one child.

2) If the vertex 𝑣 is a cut vertex and it is not root in a DFS tree, then must

𝑣 have a child 𝑠, such that some descendant of 𝑠 (including 𝑠) to be

connected to an ancestor of 𝑣 through at most one back-edge.

o Moreover, for each vertex 𝑣, except 𝑑(𝑣), we define an additional

variable, 𝑙(𝑣) (i.e., lowpoint), which denotes the minimum inscription

from 𝑑𝑓𝑖(𝑣) and 𝑑𝑓𝑖(𝑠), where 𝑠 is either descendant of 𝑣 through

one or more tree edges, or ancestor of 𝑣 through at most one back-

edge, which connects this ancestor with a descendant of 𝑣.
o So the maximum value that 𝑙(𝑣) can get is 𝑑𝑓𝑖(𝑣), and the second

observation equals to “if the cut vertex 𝑣 is not root of the DFS tree,

then vertex 𝑣 has a child 𝑠, so that 𝑙 𝑠 ≥ 𝑑𝑓𝑖(𝑣)”
o Recursively compute 𝑙 𝑣 : 𝑑𝑓𝑖 𝑣 ∪ 𝑙 𝑠 ∪ 𝑑𝑓𝑖 𝑤 ,

where 𝑠 is child vertex of 𝑣 and (𝑣, 𝑤) is a back-edge

CONNECTIVITY

 Discovering Graph Blocks

32

• A vertex 𝑣 is a cut vertex if:

1. It is a root of a tree and has more than 1 child.

2. It is not a root of a tree but has a child 𝑠: 𝑙 (𝑠) > 𝑑𝑓𝑖 (𝑣)

CONNECTIVITY

 Discovering Graph Blocks

33

• A vertex 𝑣 is a cut vertex if:

1. It is a root of a tree and has more than 1 child.

2. It is not a root of a tree but has a child 𝑠: 𝑙 (𝑠) > 𝑑𝑓𝑖 (𝑣)

CONNECTIVITY

 Discovering Graph Blocks

34

• A vertex 𝑣 is a cut vertex if:

1. It is a root of a tree and has more than 1 child.

2. It is not a root of a tree but has a child 𝑠: 𝑙 (𝑠) > 𝑑𝑓𝑖 (𝑣)

CONNECTIVITY

 Discovering Graph Blocks

35

• A vertex 𝑣 is a cut vertex if:

1. It is a root of a tree and has more than 1 child.

2. It is not a root of a tree but has a child 𝑠: 𝑙 (𝑠) > 𝑑𝑓𝑖 (𝑣)

𝑣 = 4
𝑑𝑓𝑖(4) = 4
𝑆 = 3,5
𝑙(3) = 5
𝑙(5) = 1

CONNECTIVITY

 Discovering Graph Blocks

36

• Algorithm Block Discover

Input: A graph 𝐺(𝑉, 𝐸).
Output: The vertices in each block of 𝐺.

1. 𝑖 ← 1, truncate the Stack.

2. ∀ 𝑣 ∈ 𝑉 𝑑𝑓𝑖(𝑣) ← 0
3. If for a vertex 𝑣 it holds 𝑑𝑓𝑖 𝑣 = 0

FindBlocks(𝑣, 0)

Procedure FindBlocks(𝑣, 𝑤)
1. 𝑑𝑓𝑖(𝑣) ← 𝑖, 𝑙(𝑣) ← 𝑑𝑓𝑖(𝑣), 𝑖 ← 𝑖 + 1
2. ∀ 𝑢 ∈ 𝑁(𝑣)
3. 𝑖𝑓 𝑑𝑓𝑖(𝑢) = 0
4. 𝑝𝑢𝑠ℎ(𝑢, 𝑣) (𝑖𝑓 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑝𝑢𝑠ℎ𝑒𝑑 𝑎𝑙𝑟𝑒𝑎𝑑𝑦)
5. 𝑓𝑖𝑛𝑑𝑏𝑙𝑜𝑐𝑘𝑠(𝑢, 0)
6. 𝑙(𝑣) ← min(𝑙(𝑣), 𝑙(𝑢))
7. 𝑖𝑓 (𝑙 𝑣 ≥ 𝑑𝑓𝑖(𝑣))
8. 𝑝𝑜𝑝() 𝑢𝑛𝑡𝑖𝑙 (𝑢, 𝑣) // 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 (𝑢, 𝑣)
9. 𝑖𝑓(𝑑𝑓𝑖 𝑢 < 𝑑𝑓𝑖 𝑣 𝑎𝑛𝑑 𝑢 ≠ 𝑤)
10. 𝑝𝑢𝑠ℎ((𝑣, 𝑤))
11. 𝑙(𝑣) ← min(𝑙(𝑣), 𝑙(𝑤)).

CONNECTIVITY

 Discovering Graph Blocks

37

• Algorithm Block Discover

Input: A graph 𝐺(𝑉, 𝐸).
Output: The vertices in each block of 𝐺.

1. 𝑖 ← 1, truncate the Stack.

2. ∀ 𝑣 ∈ 𝑉 𝑑𝑓𝑖(𝑣) ← 0
3. If for a vertex 𝑣 it holds 𝑑𝑓𝑖(𝑣) = 0

FindBlocks(𝑣, 0)

Procedure FindBlocks(𝑣, 𝑤)
1. 𝑑𝑓𝑖(𝑣) ← 𝑖, 𝑙(𝑣) ← 𝑑𝑓𝑖(𝑣), 𝑖 ← 𝑖 + 1
2. ∀ 𝑢 ∈ 𝑁(𝑣)
3. 𝑖𝑓 𝑑𝑓𝑖(𝑢) = 0
4. 𝑝𝑢𝑠ℎ(𝑢, 𝑣) (𝑖𝑓 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑝𝑢𝑠ℎ𝑒𝑑 𝑎𝑙𝑟𝑒𝑎𝑑𝑦)
5. 𝑓𝑖𝑛𝑑𝑏𝑙𝑜𝑐𝑘𝑠(𝑢, 0)
6. 𝑙(𝑣) ← 𝑚𝑖𝑛(𝑙(𝑣), 𝑙(𝑢))
7. 𝑖𝑓 (𝑙 𝑣 ≥ 𝑑𝑓𝑖(𝑣))
8. 𝑝𝑜𝑝() 𝑢𝑛𝑡𝑖𝑙 (𝑢, 𝑣) // 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 (𝑢, 𝑣)
9. 𝑖𝑓(𝑑𝑓𝑖 𝑢 < 𝑑𝑓𝑖 𝑣 𝑎𝑛𝑑 𝑢 ≠ 𝑤)
10. 𝑝𝑢𝑠ℎ((𝑣, 𝑤))
11. 𝑙(𝑣) ←𝑚𝑖𝑛(𝑙(𝑣), 𝑙(𝑤)).

𝑣1

𝑣6 𝑣5

𝑣4𝑣3𝑣2

𝑣1

𝑣6

𝑣2
𝑣4

𝑣3 𝑣5

𝑖 1 2 3 4 5 6

𝑑𝑓𝑖(𝑣𝑖) 1 2 5 4 6 3

𝑙(𝑣𝑖) 1 1 5 1 1 1

{(𝒗𝟏, 𝒗𝟐), (𝒗𝟐, 𝒗𝟔), (𝒗𝟔, 𝒗𝟏), (𝒗𝟒, 𝒗𝟑)}

CONNECTIVITY

 Discovering Graph Blocks

38

• Algorithm Block Discover

Input: A graph 𝐺(𝑉, 𝐸).
Output: The vertices in each block of 𝐺.

1. 𝑖 ← 1, truncate the Stack.

2. ∀ 𝑣 ∈ 𝑉 𝑑𝑓𝑖(𝑣) ← 0
3. If for a vertex 𝑣 it holds 𝑑𝑓𝑖(𝑣) = 0

FindBlocks(𝑣, 0)

Procedure FindBlocks(𝑣, 𝑤)
1. 𝑑𝑓𝑖(𝑣) ← 𝑖, 𝑙(𝑣) ← 𝑑𝑓𝑖(𝑣), 𝑖 ← 𝑖 + 1
2. ∀ 𝑢 ∈ 𝑁(𝑣)
3. 𝑖𝑓 𝑑𝑓𝑖(𝑢) = 0
4. 𝑝𝑢𝑠ℎ(𝑢, 𝑣) (𝑖𝑓 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑝𝑢𝑠ℎ𝑒𝑑 𝑎𝑙𝑟𝑒𝑎𝑑𝑦)
5. 𝑓𝑖𝑛𝑑𝑏𝑙𝑜𝑐𝑘𝑠(𝑢, 0)
6. 𝑙(𝑣) ← 𝑚𝑖𝑛(𝑙(𝑣), 𝑙(𝑢))
7. 𝑖𝑓 (𝑙 𝑣 ≥ 𝑑𝑓𝑖(𝑣))
8. 𝑝𝑜𝑝() 𝑢𝑛𝑡𝑖𝑙 (𝑢, 𝑣) // 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 (𝑢, 𝑣)
9. 𝑖𝑓(𝑑𝑓𝑖 𝑢 < 𝑑𝑓𝑖 𝑣 𝑎𝑛𝑑 𝑢 ≠ 𝑤)
10. 𝑝𝑢𝑠ℎ((𝑣, 𝑤))
11. 𝑙(𝑣) ←𝑚𝑖𝑛(𝑙(𝑣), 𝑙(𝑤)).

𝑣1

𝑣6 𝑣5

𝑣4𝑣3𝑣2

𝑣1

𝑣6

𝑣2
𝑣4

𝑣3 𝑣5

The blocks are: {(𝒗𝟒, 𝒗𝟑)},
{(𝒗𝟏, 𝒗𝟐), (𝒗𝟐, 𝒗𝟔), (𝒗𝟔, 𝒗𝟏)},
{(𝒗𝟏, 𝒗𝟒), (𝒗𝟒, 𝒗𝟓), (𝒗𝟓, 𝒗𝟏)},

𝑣1

𝑣6 𝑣5

𝑣4𝑣3𝑣2

CONNECTIVITY

 Discovering Graph Blocks

39

• The root r of a DFS tree is cut vertex ⟺ 𝑟 has more than one children in

the DFS tree

• A vertex 𝑢 ≠ 𝑟 is cut vertex ⇔ there does not exist back-edge from any

of its ancestor to 𝑢 in the DFS tree 𝑇 to some of its predecessors

It holds that a vertex 𝑢 ≠ 𝑟 is cut vertex ⇔ there exist child 𝑢’ of 𝑢 in the

DFS tree: no ancestor of 𝑢’ (including 𝑢) to has back-edge in a predecessor

of 𝑢 in the DFS tree.

𝑢 is a cut vertex and

there exists back edge

CONNECTIVITY

 Isomorphism

40

• The 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉′, 𝐸′) are said to be isomprphic, denoting

it with 𝐺 ≅ 𝐺′, if there exist a bijection between the vertex sets of

𝐺 and 𝐺’ 𝑓: 𝑉 ⟶ 𝑉′: 𝑥, 𝑦 ∈ 𝐸 ⇔ 𝑓 𝑥 , 𝑓 𝑦 ∈ 𝐸′ ∀ 𝑥, 𝑦 ∈ 𝑉

• Two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are called isomorphic if

there is one one-way match 𝑓 from set 𝑉1 in the set 𝑉2 with the property

that the vertices 𝑎, 𝑏 are adjacent to 𝐺1 if and only if the vertices

𝑓(𝑎), 𝑓(𝑏) are adjacent to 𝐺2, for each pair 𝑎, 𝑏 of 𝑉1.

• Methods for easy finding out if two graphs are not isomorphic:

1) Same order

2) Same size

3) Same degree sequence

4) Same number of components

5) For each component of (4) are positive the first three questions?

6) Both graphs have the same color polynomial?

• For 𝑛 < 8, if all questions are answered in the affirmative, then graphs are

isomorphic.

CONNECTIVITY

 Isomorphism

41

• There is no effective algorithm for finding it equilibrium of two graphs.

• First solution (worst): Keep one graph constant and rearrange each other's

nodes. We execute 𝑛2 comparisons. So the complexity is of order

𝑂(𝑛! 𝑛2) = 𝑂 (𝑛𝑛).

• Second solution: If the graph is stored with a admittance table then it is

adequate to convert the table of the first graph to the table of the second

utilizing swaps rows and/or columns.

• There are effective algorithms for specific categories of graphs.

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

42

• The link problem is the problem finding the minimum spanning trees.

• A minimum spanning tree has vertex/edge connectivity equals 1 (for 𝑛 > 3).

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

43

• The link problem is the problem finding the minimum spanning trees.

• A minimum spanning tree has vertex/edge connectivity equals 1 (for 𝑛 > 3).

• The Problem:

o Given a graph, find the minimum spanning tree so that the connectivity

equals 𝑙.
o If 𝑙 = 1, then the problems are identical (finding spanning tree and

generalized problem).

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

44

• The link problem is the problem finding the minimum spanning trees.

• A minimum spanning tree has vertex/edge connectivity equals 1 (for 𝑛 > 3).

• The Problem:

o Given a graph, find the minimum spanning tree so that the connectivity

equals 𝑙.
o If 𝑙 = 1, then the problems are identical (finding spanning tree and

generalized problem).

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

45

• The link problem is the problem finding the minimum spanning trees.

• A minimum spanning tree has vertex/edge connectivity equals 1 (for 𝑛 > 3).

• The Problem:

o Given a graph, find the minimum spanning tree so that the connectivity

equals 𝑙.
o If 𝑙 = 1, then the problems are identical (finding spanning tree and

generalized problem).

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

46

• The link problem is the problem finding the minimum spanning trees.

• A minimum spanning tree has vertex/edge connectivity equals 1 (for 𝑛 > 3).

• The Problem:

o Given a graph, find the minimum spanning tree so that the connectivity

equals 𝑙.
o If 𝑙 = 1, then the problems are identical (finding spanning tree and

generalized problem).

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

47

• Let 𝐺 an unweighted complete graph with 𝑛 vertices.

• Problem: Finding the subgraph 𝐻𝑙,𝑛 of 𝐺 (not necessarily induced) with

𝑛 vertices that are 𝑙-connected and has the fewest possible edges denoted as

𝑓 𝑙, 𝑛 : 𝑓 𝑙, 𝑛 ≤
𝑙⋅𝑛

2
).

• The algorithm has three cases:

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

48

• Let 𝐺 an unweighted complete graph with 𝑛 vertices.

• Problem: Finding the subgraph 𝐻𝑙,𝑛 of 𝐺 (not necessarily induced) with

𝑛 vertices that are 𝑙-connected and has the fewest possible edges denoted as

𝑓 𝑙, 𝑛 : 𝑓 𝑙, 𝑛 ≤
𝑙⋅𝑛

2
).

• The algorithm has three cases:

1. 𝒍 even (𝒍 = 𝟐𝒓).
The graph 𝐻2𝑟,𝑛 has nodes 0, 1, 2, … , 𝑛 − 1 and two vertices 𝑖 and 𝑗 are

adjacent if they differ at most 𝑟 (𝑚𝑜𝑑 𝑛) [𝑖 − 𝑟 ≤ j ≤ i + 𝑟]

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

49

• Let 𝐺 an unweighted complete graph with 𝑛 vertices.

• Problem: Finding the subgraph 𝐻𝑙,𝑛 of 𝐺 (not necessarily induced) with

𝑛 vertices that are 𝑙-connected and has the fewest possible edges denoted as

𝑓 𝑙, 𝑛 : 𝑓 𝑙, 𝑛 ≤
𝑙⋅𝑛

2
).

• The algorithm has three cases:

1. 𝒍 even (𝒍 = 𝟐𝒓).
The graph 𝐻2𝑟,𝑛 has nodes 0, 1, 2, … , 𝑛 − 1 and two vertices 𝑖 and 𝑗 are

adjacent if they differ at most 𝑟 (𝑚𝑜𝑑 𝑛) [𝑖 − 𝑟 ≤ j ≤ i + 𝑟]

2. 𝒍 odd (𝒍 = 𝟐𝒓 + 𝟏), 𝒏 even.
Graph 𝐻2𝑟+1,𝑛 is constructed (the previous relationship applies), from

the graph 𝐻2𝑟,𝑛 by adding the adjacent edges on the vertices 𝑖 and

𝑖 + 𝑛 / 2, for 1 ≤ 𝑖 ≤ 𝑛 / 2.

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

50

• Let 𝐺 an unweighted complete graph with 𝑛 vertices.

• Problem: Finding the subgraph 𝐻𝑙,𝑛 of 𝐺 (not necessarily induced) with

𝑛 vertices that are 𝑙-connected and has the fewest possible edges denoted as

𝑓 𝑙, 𝑛 : 𝑓 𝑙, 𝑛 ≤
𝑙⋅𝑛

2
).

• The algorithm has three cases:

1. 𝒍 even (𝒍 = 𝟐𝒓).
The graph 𝐻2𝑟,𝑛 has nodes 0, 1, 2, … , 𝑛 − 1 and two vertices 𝑖 and 𝑗 are

adjacent if they differ at most 𝑟 (𝑚𝑜𝑑 𝑛) [𝑖 − 𝑟 ≤ j ≤ i + 𝑟]

2. 𝒍 odd (𝒍 = 𝟐𝒓 + 𝟏), 𝒏 even.
Graph 𝐻2𝑟+1,𝑛 is constructed (the previous relationship applies), from

the graph 𝐻2𝑟,𝑛 by adding the adjacent edges on the vertices 𝑖 and

𝑖 + 𝑛 / 2, for 1 ≤ 𝑖 ≤ 𝑛 / 2.
3. 𝒍 odd (𝒍 = 𝟐𝒓 + 𝟏), 𝒏 odd.

Graph 𝐻2𝑟+1,𝑛 is constructed (the previous relationship applies), from

the graph 𝐻2𝑟,𝑛 by connecting vertex 0 with vertices (𝑛 − 1) / 2 and

(𝑛 + 1) / 2 and vertex 𝑖 with vertex i + (𝑛 + 1) / 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤
(𝑛 − 1) / 2.

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

51

• Theorem 10 (Harary, 1962):

The graph 𝐻𝑙,𝑛 is 𝑙-connected.

o Focuses in the case of 𝑙 = 2𝑟. We will prove by contradiction that in this

graph there does not exist vertex cut set of less than 2𝑟 vertices.

o Let us assume that 𝑉’ is a vertex cut set: |𝑉’| < 2𝑟. Let that I and j are

two vertices that belong to different components of 𝐻2𝑟,𝑛 − 𝑉’.

o Let the two vertex sets 𝑆 = {𝐼, 𝑖 + 1, … , 𝑗 − 1, 𝑗} and

𝑇 = {𝑗, 𝑗 + 1, … , 𝑖 − 1, 𝑖}, where the addition is achieved through

modulo. Since |𝑉’| < 2𝑟, without loss of generality, we can assume that

𝑉 ∩ S < 𝑟.

o Obviously there does exist a sequence of discrete vertices in the set

𝑆 − 𝑉’ starting from 𝑖 and finishing to 𝑗, where the difference of two

consecutive vertices is at most 𝑟.

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

52

• Theorem 10 (Harary, 1962):

The graph 𝐻𝑙,𝑛 is 𝑙-connected.

o This sequence is a path from 𝑖 to 𝑗 in the graph 𝐻2𝑟,𝑛 − 𝑉’, that is a

contradiction. Thus, the graph 𝐻2𝑟,𝑛 is 2𝑟-connected. Similarly, we can

proceed in the case 𝑜𝑓 𝑙 = 2𝑟 + 1.

o It is easy to see that |𝐸(𝐻𝑙,𝑛)| =
𝑙⋅𝑛

2

o From the Theorem it holds that: 𝑓 𝑙, 𝑛 ≤
𝑙⋅𝑛

2
and from the previous

relation (i.e., 𝑓 𝑙, 𝑛 ≤
𝑙⋅𝑛

2
) it is implied that 𝑓 𝑙, 𝑛 =

𝑙⋅𝑛

2

o Additionally from Theorem 5, it also holds that this graph is 𝑙-connected

regarding its edges. So, if we denote with 𝑔(𝑙, 𝑛) the minimum number

of edges in an 𝑙-connected on edges graph of order 𝑛, then for 1 < 𝑙 <

𝑛 it holds that h 𝑙, 𝑛 =
𝑙⋅𝑛

2

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

53

• Theorem 10 (Harary, 1962):

The graph 𝐻𝑙,𝑛 is 𝑙-connected.

o Example
𝑙 even (𝑙 = 4) ⟹ 𝑟 = 2 and 𝑛 = 8
The graph 𝐻4,8 has vertices 0, 1, 2, … , 7 and two

vertices 𝑖 and 𝑗 are adjacent if they differ by a maximum of 𝑟 (𝑚𝑜𝑑 8).

0.1 ∈ 𝐸 because | 0 − 1 | ≤ 2
0.2 ∈ 𝐸 because | 0 − 2 | ≤ 2
0.3 ∈ 𝐸 because | 0 − 3 | ≤ 2
0.6 ∈ 𝐸 because | 0 − 6 | ≤ 2 (𝑚𝑜𝑑 8)
0.7 ∈ 𝐸 because | 0 − 7 | ≤ 2 (𝑚𝑜𝑑 8)

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

54

• Theorem 10 (Harary, 1962):

The graph 𝐻𝑙,𝑛 is 𝑙-connected.

o Example

𝑙 odd 𝑙 = 2𝑟 + 1 , 𝑛 odd : As before, vertices 𝑖 and
𝑖 + 𝑛 / 2 are also joined, for 1 ≤ 𝑖 ≤ 𝑛 / 2.

𝑙 even (𝑙 = 4) ⟹ 𝑟 = 2 and 𝑛 = 8
The graph 𝐻4,8 has vertices 0, 1, 2, … , 7 and two

vertices 𝑖 and 𝑗 are adjacent if they differ by a maximum of 𝑟 (𝑚𝑜𝑑 8).

0.1 ∈ 𝐸 because | 0 − 1 | ≤ 2
0.2 ∈ 𝐸 because | 0 − 2 | ≤ 2
0.3 ∈ 𝐸 because | 0 − 3 | ≤ 2
0.6 ∈ 𝐸 because | 0 − 6 | ≤ 2 (𝑚𝑜𝑑 8)
0.7 ∈ 𝐸 because | 0 − 7 | ≤ 2 (𝑚𝑜𝑑 8)

CONNECTIVITY

 Minimum Spanning Trees (Link Problem)

55

• Theorem 10 (Harary, 1962):

The graph 𝐻𝑙,𝑛 is 𝑙-connected.

o Example

𝑙 odd 𝑙 = 2𝑟 + 1 , 𝑛 odd : As before, vertices 𝑖 and
𝑖 + 𝑛 / 2 are also joined, for 1 ≤ 𝑖 ≤ 𝑛 / 2.

𝑙 even (𝑙 = 4) ⟹ 𝑟 = 2 and 𝑛 = 8
The graph 𝐻4,8 has vertices 0, 1, 2, … , 7 and two

vertices 𝑖 and 𝑗 are adjacent if they differ by a maximum of 𝑟 (𝑚𝑜𝑑 8).

0.1 ∈ 𝐸 because | 0 − 1 | ≤ 2
0.2 ∈ 𝐸 because | 0 − 2 | ≤ 2
0.3 ∈ 𝐸 because | 0 − 3 | ≤ 2
0.6 ∈ 𝐸 because | 0 − 6 | ≤ 2 (𝑚𝑜𝑑 8)
0.7 ∈ 𝐸 because | 0 − 7 | ≤ 2 (𝑚𝑜𝑑 8)

𝑙 odd (𝑙 = 2𝑟 + 1), 𝑛 even: As before, vertex 0 is also joined

by (𝑛 − 1) / 2 and (𝑛 + 1) / 2 and vertex 𝑖 with vertex
𝑖 + (𝑛 + 1) / 2, for 1 ≤ 𝑖 ≤ (𝑛 − 1) / 2.

