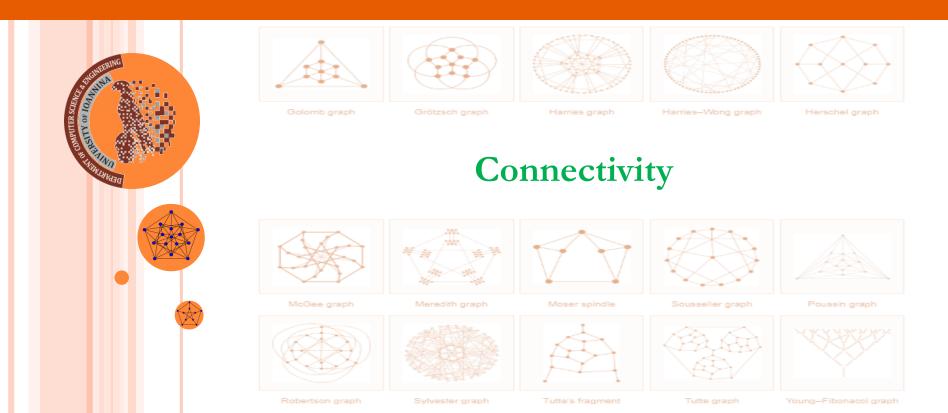
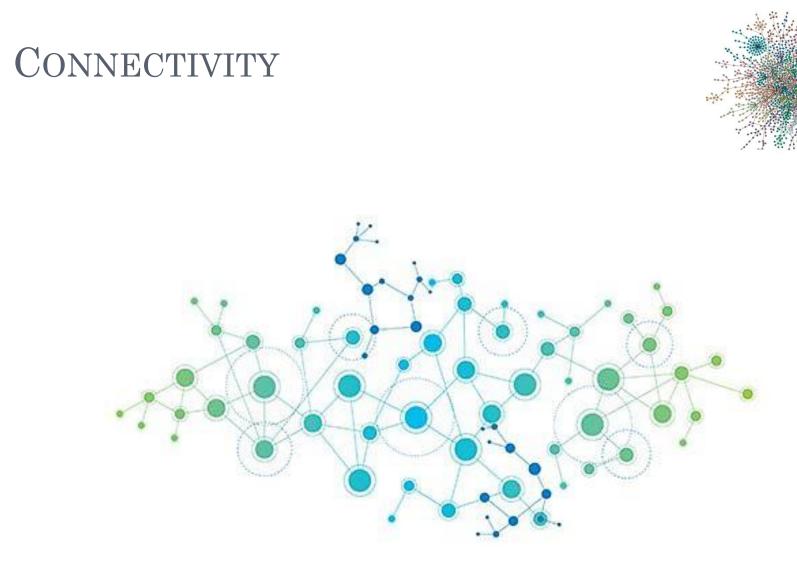
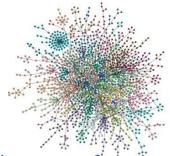


Graph Theory





• Separating Sets

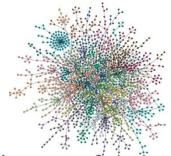


- A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected.
 - A set $V' \subseteq V$ is a set of vertices (vertex cut set) if the graph G V' is not connected, without the existence of a subset of V' with the same property.

vertex cut set,

vertex separating set.

• Separating Sets

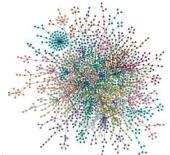


- A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected.
 - Vertex Connectivity VC(G) of a graph G is minimum k = |V'|, so that graph G has a set V' with k vertex connectivity.

vertex cut set,

vertex separating set.

• Separating Sets

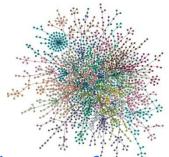


- A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected.
 - A graph G is called k-connected if $VC(G) \ge k$, while it means that the deletion of k vertices results to a disconnected graph.

vertex cut set, (1-connected)

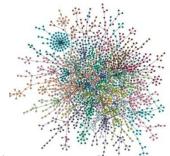
vertex separating set. (3-connected)

• Separating Sets



- A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected.
 - Any graph G is said to be k-connected if it contains at least k + 1 vertices, but does not contain a set of k 1 vertices whose removal disconnects the graph; and $\kappa(G)$ is defined as the largest k such that G is k-connected.
 - A vertex cut for two vertices *u* and *v* is a set of vertices whose removal from the graph disconnects *u* and *v*.
 - The local connectivity $\kappa(u, v)$ is the size of a smallest vertex cut separating u and v.
 - Local connectivity is symmetric for undirected graphs; that is, $\kappa(u,v) = \kappa(v,u).$

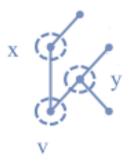
• Separating Sets



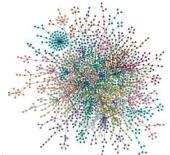
- A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected.
- Theorem 1:

A vertex v of a tree is "cut-vertex" if and only if d(v) > 1

- If d(v) = 0, then $G = K_1$ and v is not a cut vertex.
- If d(v) = 1, then G v is a tree, where the number of the total components of G v equals the number of components of G, i.e., 1, and hence v is not a vertex cut.
- If d(v) > 1, let x, y two adjacent vertices of v, then the path P(x, v, y) is the only path that connects vertices x, y, which means that there does not exist path between x and y in the graph G - v, and hence v is a cut vertex.



• Separating Sets



• A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected.

• Theorem 1:

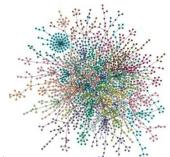
A vertex v of a tree is "cut-vertex" if and only if d(v) > 1

Corollary:

Any connected graph has at least 2 vertices that are not "cut vertices".

- The graph G has at least a connected tree T, which by the theorem it has two vertices of degree 1.
- Let v: d(v) = 1, then T v is composed by one component.
- Since T v is a connected sub-tree of G v, then the number of the components of G v = 1. Hence, vertex v is not a cut vertex. Since there exist at least two vertices of degree 1 in tree T it implies that there exist two vertices that are not cut vertices in graph G.

• Separating Sets



• A cut, vertex cut, or separating set of a connected graph G is a set of vertices whose removal renders G disconnected.

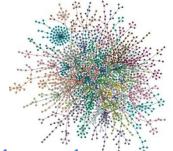
• Theorem 2:

A vertex v of a graph G is cut vertex iff there exist two vertices, let u, w $(u, w \neq v)$, such that vertex v to exist in every path from u to w.

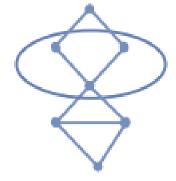
 (\Rightarrow) Let that v is a cut vertex in graph G. If u and w are vertices in different components of graph G - v, then there do not exist paths from u to w in graph G - v. But graph G is connected, and hence there exist such paths in G. Hence, vertex v exists in each of such paths.

(\Leftarrow) Let that there exist vertices u, w in graph G such that vertex v belongs to each path from u to w. Hence, there do not exist such paths in graph G - v and thus graph G - v is not connected. Hence, vertex v is cut vertex.

• Separating Sets



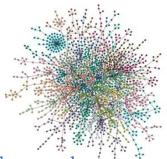
• Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G - E' to be disconnected, without the existence of a subset of this set with the same property.



vertex cut set

vertex separating set

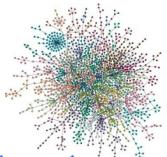
• Separating Sets



- Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G E' to be disconnected, without the existence of a subset of this set with the same property.
 - Edge Connectivity of a graph G is the minimum k = |E'|, so that graph G has a set of k cut edges. The edge connectivity of a graph G defines the minimum k = |E'|, so that G is stays connected after deletion k 1 edges.
 - A graph is called *k***-connected** to the edges if $EC(G) \ge k$
 - Given a set of vertices x, y, for which there exist at least one path that connects them, we define as local edge connectivity $\lambda(u, v)$ the size of the smallest set of cut edges such that no longer exist path between the vertices. For directed graphs it holds that local connectivity is symmetrical, i.e., $\lambda(u, v) = \lambda(v, u)$.

Additionally, it holds that $EC(G) \leq \lambda(u, v) \forall u, v \in V(G)$

• Separating Sets



• Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G - E' to be disconnected, without the existence of a subset of this set with the same property.

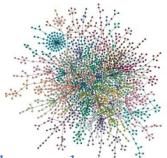
• Theorem 3:

An edge e is a cut edge if and only if they exist 2 nodes u and w such that the edge e belongs to each path from node u to w.

 (\Rightarrow) Let that e is a cut edge in graph G. Then graph G - e is not connected. If u, w are two vertices in different components of G - e, then there do not exist paths from u to w in this graph. However, since G is connected there do exist paths from u to w in this graph.

(\Leftarrow) If there exist vertices u and w such that edge e belongs to each path from u to w in the graph G, then in graph G - e there do not exist paths from u to w. Thus, G - e is not connected and edge e is a cut edge.

• Separating Sets



• Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G - E' to be disconnected, without the existence of a subset of this set with the same property.

• Theorem 4:

An edge e of a graph G is cut edge *iff* it is not contained in a cycle.

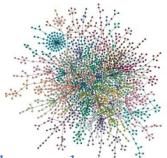
 (\Rightarrow) Let that *e* is a cut edge of *G*.

Since the number of components of G - e is greater than the number of components of G, there exist vertices u and v that are connected in graph G but are not connected in G - e.

Hence, there exist a path P in G, from vertex u to vertex v, crossing edge e. Let us assume that vertices x, y are adjacent to edge e, and that x precedes y in P. In graph G - e vertex u is connected with vertex x, and vertex y is connected to vertex v, through P.

If edge e belong to a cycle C, then vertices x, y would be connected through path C - e in graph G - e. Thus, vertices u, v could be connected with a path in graph G - e, which is a contradiction.

• Separating Sets



- Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G E' to be disconnected, without the existence of a subset of this set with the same property.
- Theorem 4:

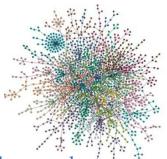
An edge e of a graph G is cut edge *iff* it is not contained in a cycle.

(\Leftarrow) Let us assume that edge e = (x, y) is not a cut edge of G.

Hence, the number of components of G equals the number of components in G - e.

Since in graph G there exists a path from vertex x to vertex y, it is implied that vertices x and y belong to the same component in both G and G - e. Thus in graph G - e there exist a path P from vertex x to vertex y, but then edge e belongs to the cycle P + e of G.

• Separating Sets

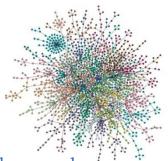


- Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G E' to be disconnected, without the existence of a subset of this set with the same property.
- Theorem 5:

In every graph G = (V, E) it holds that $VC(G) \leq EC(G) \leq d(G)$.

- For the right inequity:
 - If the graph G is not connected, then it holds EC(G) = 0.
 - If the graph G is connected, then it can be disconnected by eliminating the edges adjacent to the vertex with the minimum degree.
 - Hence, in any case, the right inequity is true.

• Separating Sets



- Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G E' to be disconnected, without the existence of a subset of this set with the same property.
- Theorem 5:

In every graph G = (V, E) it holds that $VC(G) \leq EC(G) \leq d(G)$.

- For the left inequity:
 - If the graph G is not connected, then it holds VG(G) = EC(G) = 0.
 - If the graph G is connected, having one bridge, then it holds EC(G) = 1 = VC(G), either because it holds $G = K_2$ or because G is connected and contains cut edges.
 - If EC(G) ≥ 2, then the bridge is edge e = (u, v). For the rest of the edges we select a vertex ≠ u, v and are deleted.
 - > If the remaining graph is not connected, then it holds VC(G) < EC(G).
 - > If the remaining graph is connected, then it contains a bridge e, and hence the deletion of either u or v makes the graph disconnected.

In each of the cases above, holds the left inequity.

16

• Separating Sets



- Similarly, we define edge cut set, or, edge separating set, for the graph G = (V, E) as the set $E' \subseteq E$ that causes the graph G E' to be disconnected, without the existence of a subset of this set with the same property.
- Theorem 6 (Chartrand & Harary, 1968):

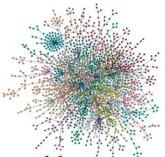
Let the graph G, of order n, and an integer l, where $1 \le l \le n - 1$. If it holds that $d(G) \ge (n + l - 2)/2$, then graph G is *l*-connected.

- If $G = K_n$, then G is *l*-connected.
- Let as assume that *G* is not *l*-connected
 - In that case there exists a set S of cut edges: |S| = k < l.
 - Let that G_1 is the component of subgraph G S, with the minimum order. Since the subgraph G S is of order n k, the order of G_1 is at most (n k)/2.
 - If v is vertex of G_1 , then it can be adjacent to other vertices of G_1 and the vertices of S, and it holds that:

$$d(v) \le k + \frac{n-k}{2} - 1 = \frac{n+k-2}{2} < \frac{n+l-2}{2}$$

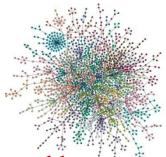
17

o Graph Blocks



- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- Block of a graph G is a subgraph of G that tis 2-connected, having the maximum possible number of vertices.
- Each graph equals the union of its blocks.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.

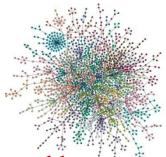
o Graph Blocks



- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

o Graph Blocks

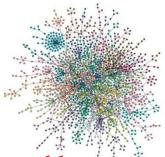


- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

 (\Rightarrow) If any 2 vertices of G are connected by 2 internally disjoint paths, then G is connected and has no set of one cut edge. Thus G is 2-connected.

o Graph Blocks

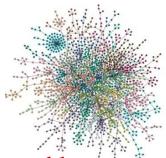


- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

(\Leftarrow) Let that *G* is 2-connected. Based on the dist(u, v) (let that dist(u, v) = 1) between any arbitrary vertices *u* and *v* we will inductively prove that these vertices are connected by 2 internally disjoint paths.

o Graph Blocks



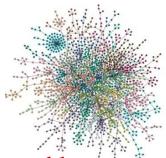
- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

 (\Leftarrow) Let that G is 2-connected. Based on the dist(u, v) (let that dist(u, v) = 1) between any arbitrary vertices u and v we will inductively prove that these vertices are connected by 2 internally disjoint paths.

Since G is connected it is implied that edge (u, v) is not a cut edge, and based on the Theorem 4 it belongs to a cycle, and thus vertices u and v are connected by 2 internally disjoint paths.

• Graph Blocks



- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.

• Theorem 7 (Whitney, 1932):

A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

 (\Leftarrow) Let that G is 2-connected. Based on the dist(u, v) (let that dist(u, v) = 1) between any arbitrary vertices u and v we will inductively prove that these vertices are connected by 2 internally disjoint paths.

• Let that the theorem holds for any vertices of distance less than k and let that $dist(u, v) = k \ge 2$. Let us assume the path between u and v of length k and let that w precedes v in this path.

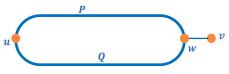
o Graph Blocks

- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

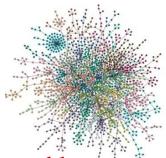
A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

(\Leftarrow) Let that *G* is 2-connected. Based on the dist(u, v) (let that dist(u, v) = 1) between any arbitrary vertices *u* and *v* we will inductively prove that these vertices are connected by 2 internally disjoint paths.

• Since, based on the induction assumption, dist(u, w) = k - 1, it is implied that there exist 2 internally disjoint paths P and Q between the vertices u and w.



o Graph Blocks

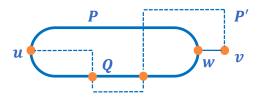


- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

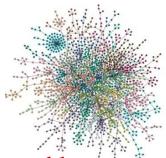
A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

 (\Leftarrow) Let that G is 2-connected. Based on the dist(u, v) (let that dist(u, v) = 1) between any arbitrary vertices u and v we will inductively prove that these vertices are connected by 2 internally disjoint paths.

• Since, G is 2-connected it is implied that G - w is also connected and contains a path P' from vertex u to vertex v.



o Graph Blocks

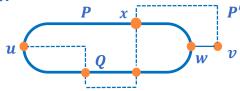


- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

(\Leftarrow) Let that *G* is 2-connected. Based on the dist(u, v) (let that dist(u, v) = 1) between any arbitrary vertices *u* and *v* we will inductively prove that these vertices are connected by 2 internally disjoint paths.

- Let that x is the last vertex in P' that also exists in $P \cup Q$.
- Since u exists in $P \cup Q$, there exists such a vertex without excluding the possibility of x = u.



o Graph Blocks

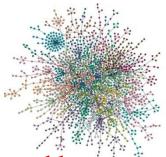
- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Theorem 7 (Whitney, 1932):

A graph G of order $n \ge 3$ is 2-connected iff any two of its vertices are connected by at least 2 internally disjoint paths.

(\Leftarrow) Let that *G* is 2-connected. Based on the dist(u, v) (let that dist(u, v) = 1) between any arbitrary vertices *u* and *v* we will inductively prove that these vertices are connected by 2 internally disjoint paths.

- Without loss of generality, $x \in P$.
- Thus graph G has 2 internally disjoint paths where the one is composed by the part of P from u to x including the part of P' from x to v, while the other is composed by the path Q and the path from w to v.

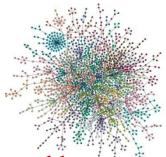
o Graph Blocks



- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.
- Corollary:
 - If a graph G is 2-connected, then any two of its vertices belong to a cycle.
- Corollary:
 - If a graph G consists of a block with $n \ge 3$, then any two of its edges belong to a cycle.
- Theorem 8 (Menger, 1927):

The maximum number of internally disjoint paths from a vertex u to a vertex v of a connected graph G equals the minimum number of vertices separating u and v.

o Graph Blocks



- A graph that has no cut vertices is called **biconnected**, or **non-separable**, or that this graph is composed by a **Block**, or a **bicomponent**.
- We define as internally disjoint paths two paths, let P₁ and P₂, that have common endpoints the vertices u and v, but have no other vertices in common, i.e., it holds that: V(P₁) ∩ V(P₂) = {u, v}.

• Theorem 9:

A graph G is k-connected iff all pairs of vertices are connected by at least k internally disjoint paths.

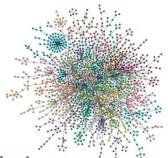
• Corollary (Menger's Theorem over edges):

The maximum number of internally disjoint paths from a vertex u to a vertex v of a connected graph G equals the minimum number of edges separating u and v.

• Corollary:

A graph G is k-connected with respect to its edges iff all the pairs of vertices are connected by at least k internally disjoint paths.

o Discovering Graph Blocks



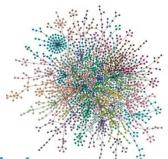
- In order to discover the blocks in a graph it is adequate to identify the cut vertices as follows:
 - 1) If the vertex v is a cut vertex and it is the root in a DFS tree, then v should have more than one child.
 - If the vertex v is a cut vertex and it is not root in a DFS tree, then must v have a child s, such that some descendant of s (including s) to be connected to an ancestor of v through at most one back-edge.
 - Moreover, for each vertex v, except d(v), we define an additional variable, l(v) (i.e., lowpoint), which denotes the minimum inscription from dfi(v) and dfi(s), where s is either descendant of v through one or more tree edges, or ancestor of v through at most one backedge, which connects this ancestor with a descendant of v.

The parameter l(v) (calculated recursively) is the minimum of :

- 1. dfi(v) (vertex inscription),
- 2. l(s), where s is a child of vertex v,
- 3. dfi(w) (vertex inscription), where (v, w) is the back-edge of vertex v

30

o Discovering Graph Blocks

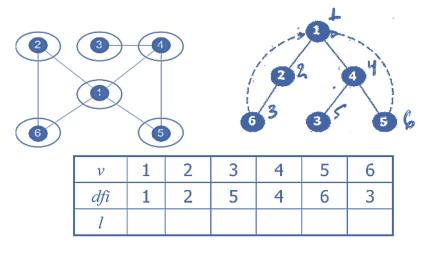


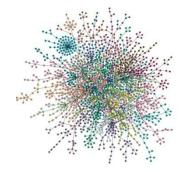
- In order to discover the blocks in a graph it is adequate to identify the cut vertices as follows:
 - 1) If the vertex v is a cut vertex and it is the root in a DFS tree, then v should have more than one child.
 - If the vertex v is a cut vertex and it is not root in a DFS tree, then must v have a child s, such that some descendant of s (including s) to be connected to an ancestor of v through at most one back-edge.
 - Moreover, for each vertex v, except d(v), we define an additional variable, l(v) (i.e., lowpoint), which denotes the minimum inscription from dfi(v) and dfi(s), where s is either descendant of v through one or more tree edges, or ancestor of v through at most one backedge, which connects this ancestor with a descendant of v.
 - So the maximum value that l(v) can get is dfi(v), and the second observation equals to "if the cut vertex v is not root of the DFS tree, then vertex v has a child s, so that $l(s) \ge dfi(v)$ "
 - Recursively compute l(v): $\{dfi(v)\} \cup \{l(s)\} \cup \{dfi(w)\}$, where s is child vertex of v and (v, w) is a back-edge

31

• Discovering Graph Blocks

- A vertex \boldsymbol{v} is a cut vertex if:
 - 1. It is a root of a tree and has more than 1 child.
 - 2. It is not a root of a tree but has a child s: l(s) > dfi(v)

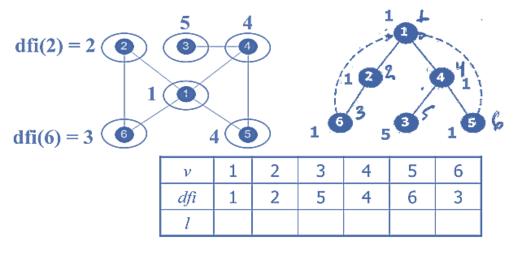




o Discovering Graph Blocks

- A vertex \boldsymbol{v} is a cut vertex if:
 - 1. It is a root of a tree and has more than 1 child.

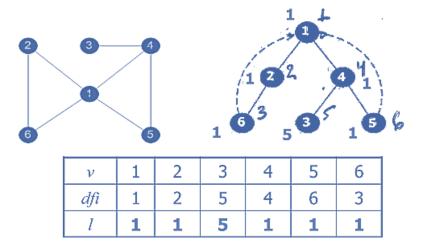
2. It is not a root of a tree but has a child s: l(s) > dfi(v)

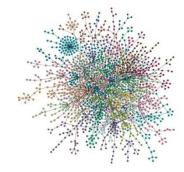




• Discovering Graph Blocks

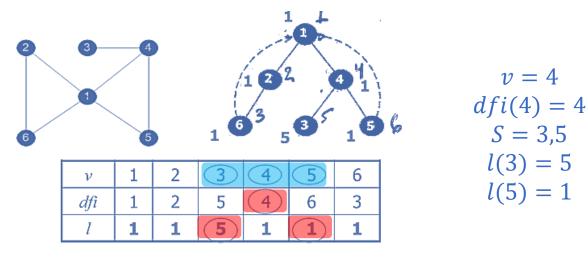
- A vertex \boldsymbol{v} is a cut vertex if:
 - 1. It is a root of a tree and has more than 1 child.
 - 2. It is not a root of a tree but has a child s: l(s) > dfi(v)

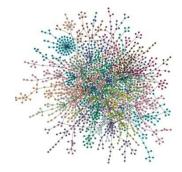




o Discovering Graph Blocks

- A vertex v is a cut vertex if:
 - 1. It is a root of a tree and has more than 1 child.
 - 2. It is not a root of a tree but has a child s: l(s) > dfi(v)





v = 4

S = 3,5

l(3) = 5

l(5) = 1

o Discovering Graph Blocks

• Algorithm Block Discover

Input: A graph *G*(*V*, *E*). Output: The vertices in each block of *G*.

- 1. $i \leftarrow 1$, truncate the Stack.
- 2. $\forall v \in V dfi(v) \leftarrow 0$
- 3. If for a vertex v it holds dfi(v) = 0FindBlocks(v, 0)

Procedure FindBlocks(*v*, *w*)

1.
$$dfi(v) \leftarrow i, l(v) \leftarrow dfi(v), i \leftarrow i+1$$

2. $\forall u \in N(v)$

3. if
$$dfi(u) = 0$$

- 4. push(u, v) (if not been pushed already)
- 5. findblocks(u, 0)
- 6. $l(v) \leftarrow \min(l(v), l(u))$
- 7. if $(l(v) \ge dfi(v))$
- 8. pop() until (u, v) // including (u, v)
- 9. $if(dfi(u) < dfi(v) \text{ and } u \neq w)$
- $10. \quad push((v,w))$
- 11. $l(v) \leftarrow \min(l(v), l(w)).$

o Discovering Graph Blocks

- Algorithm Block Discover
 - Input: A graph G(V, E). Output: The vertices in each block of G.
 - 1. $i \leftarrow 1$, truncate the Stack.
 - 2. $\forall v \in V \, dfi(v) \leftarrow 0$
 - 3. If for a vertex v it holds dfi(v) = 0FindBlocks(v, 0)

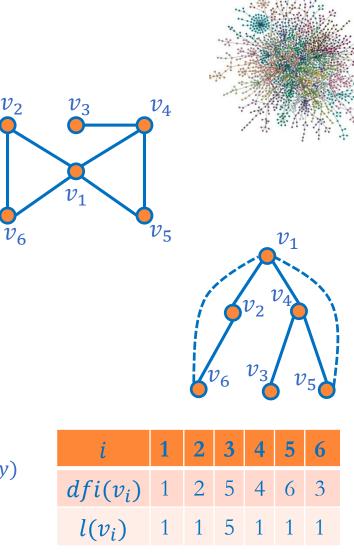
Procedure FindBlocks(*v*, *w*)

1.
$$dfi(v) \leftarrow i, l(v) \leftarrow dfi(v), i \leftarrow i + 1$$

2. $\forall u \in N(v)$

3. if
$$dfi(u) = 0$$

- 4. push(u, v) (if not been pushed already)
- 5. findblocks(u, 0)
- $6. \qquad l(v) \leftarrow min(l(v), l(u))$
- 7. if $(l(v) \ge dfi(v))$
- 8. pop() until (u, v) // including (u, v)
- 9. $if(dfi(u) < dfi(v) \text{ and } u \neq w)$
- *10.* push((v,w))
- 11. $l(v) \leftarrow min(l(v), l(w)).$



 $\{(v_1, v_2), (v_2, v_6), (v_6, v_1), (v_4, v_3)\}$

o Discovering Graph Blocks

- Algorithm Block Discover
 - Input: A graph G(V, E). Output: The vertices in each block of G.
 - 1. $i \leftarrow 1$, truncate the Stack.
 - 2. $\forall v \in V dfi(v) \leftarrow 0$
 - 3. If for a vertex v it holds dfi(v) = 0FindBlocks(v, 0)

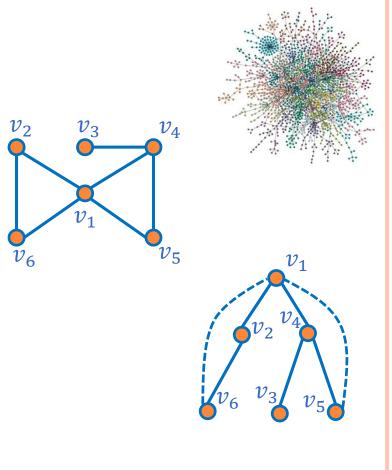
Procedure FindBlocks(v, w)

1.
$$dfi(v) \leftarrow i, l(v) \leftarrow dfi(v), i \leftarrow i + 1$$

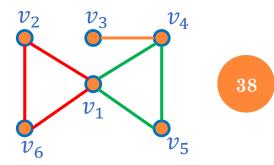
2. $\forall u \in N(v)$

3. if
$$dfi(u) = 0$$

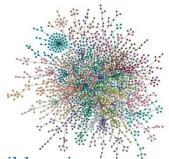
- 4. push(u, v) (if not been pushed already)
- 5. findblocks(u, 0)
- $6. \qquad l(v) \leftarrow min(l(v), l(u))$
- 7. if $(l(v) \ge dfi(v))$
- 8. pop() until (u, v) // including (u, v)
- 9. $if(dfi(u) < dfi(v) \text{ and } u \neq w)$
- *10.* push((v, w))
- 11. $l(v) \leftarrow min(l(v), l(w)).$



The blocks are: $\{(v_4, v_3)\}$, $\{(v_1, v_2), (v_2, v_6), (v_6, v_1)\}$, $\{(v_1, v_4), (v_4, v_5), (v_5, v_1)\}$,



o Discovering Graph Blocks



- The root r of a DFS tree is cut vertex ⇔ r has more than one children in the DFS tree
- A vertex $u \neq r$ is cut vertex \Leftrightarrow there does not exist back-edge from any of its ancestor to u in the DFS tree T to some of its predecessors

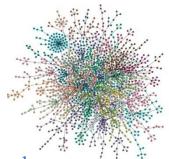
It holds that a vertex $u \neq r$ is cut vertex \Leftrightarrow there exist child u' of u in the DFS tree: no ancestor of u' (including u) to has back-edge in a predecessor of u in the DFS tree.

u is a cut vertex and there exists back edge

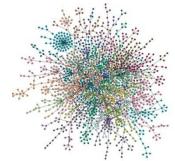
• Isomorphism

- The G = (V, E) and G' = (V', E') are said to be isomprphic, denoting it with $G \cong G'$, if there exist a bijection between the vertex sets of G and $G' f: V \longrightarrow V': (x, y) \in E \iff (f(x), f(y)) \in E' \forall x, y \in V$
- Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called isomorphic if there is one one-way match f from set V_1 in the set V_2 with the property that the vertices a, b are adjacent to G_1 if and only if the vertices f(a), f(b) are adjacent to G_2 , for each pair a, b of V_1 .
- Methods for easy finding out if two graphs are not isomorphic:
 - 1) Same order
 - 2) Same size
 - 3) Same degree sequence
 - 4) Same number of components
 - 5) For each component of (4) are positive the first three questions?
 - 6) Both graphs have the same color polynomial?
- For *n* < 8, if all questions are answered in the affirmative, then graphs are isomorphic.

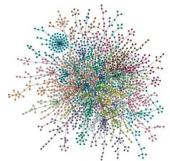
• Isomorphism



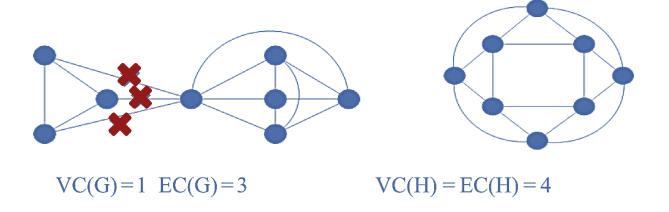
- There is no effective algorithm for finding it equilibrium of two graphs.
- First solution (worst): Keep one graph constant and rearrange each other's nodes. We execute n^2 comparisons. So the complexity is of order $O(n!n^2) = O(n^n)$.
- Second solution: If the graph is stored with a admittance table then it is adequate to convert the table of the first graph to the table of the second utilizing swaps rows and/or columns.
- There are effective algorithms for specific categories of graphs.

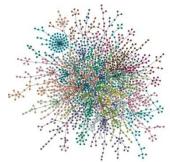


- The link problem is the problem finding the minimum spanning trees.
- A minimum spanning tree has vertex/edge connectivity equals 1 (for n > 3).

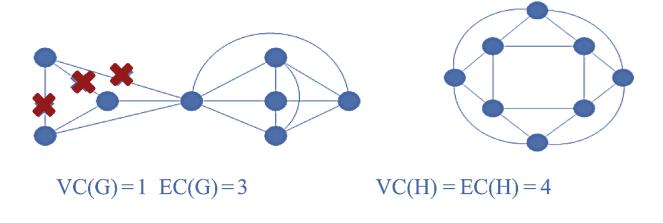


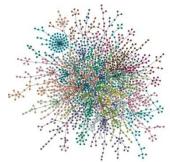
- The link problem is the problem finding the minimum spanning trees.
- A minimum spanning tree has vertex/edge connectivity equals 1 (for n > 3).
- The Problem:
 - Given a graph, find the minimum spanning tree so that the connectivity equals l.
 - If l = 1, then the problems are identical (finding spanning tree and generalized problem).





- The link problem is the problem finding the minimum spanning trees.
- A minimum spanning tree has vertex/edge connectivity equals 1 (for n > 3).
- The Problem:
 - Given a graph, find the minimum spanning tree so that the connectivity equals l.
 - If l = 1, then the problems are identical (finding spanning tree and generalized problem).

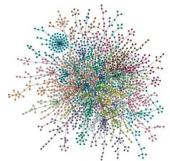




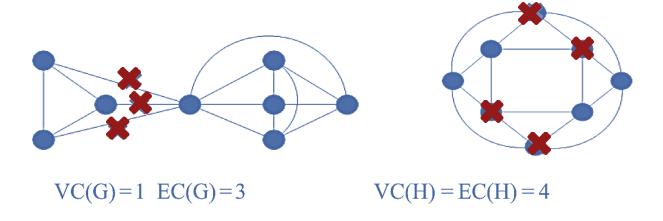
45

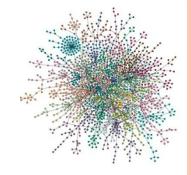
- The link problem is the problem finding the minimum spanning trees.
- A minimum spanning tree has vertex/edge connectivity equals 1 (for n > 3).
- The Problem:
 - Given a graph, find the minimum spanning tree so that the connectivity equals l.
 - If l = 1, then the problems are identical (finding spanning tree and generalized problem).





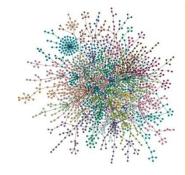
- The link problem is the problem finding the minimum spanning trees.
- A minimum spanning tree has vertex/edge connectivity equals 1 (for n > 3).
- The Problem:
 - Given a graph, find the minimum spanning tree so that the connectivity equals l.
 - If l = 1, then the problems are identical (finding spanning tree and generalized problem).





- Let *G* an unweighted complete graph with *n* vertices.
- Problem: Finding the subgraph $H_{l,n}$ of G (not necessarily induced) with n vertices that are l-connected and has the fewest possible edges denoted as $f(l,n): f(l,n) \leq \left[\frac{l \cdot n}{2}\right]$).
- <u>The algorithm has three cases:</u>

Connectivity



• Minimum Spanning Trees (Link Problem)

- Let *G* an unweighted complete graph with *n* vertices.
- Problem: Finding the subgraph $H_{l,n}$ of G (not necessarily induced) with n vertices that are l-connected and has the fewest possible edges denoted as $f(l,n): f(l,n) \leq \left[\frac{l \cdot n}{2}\right]$).
- <u>The algorithm has three cases:</u>
 - **1.** l even (l = 2r).

The graph $H_{2r,n}$ has nodes 0, 1, 2, ..., n-1 and two vertices i and j are adjacent if they differ at most $r \pmod{n}$ $[i - r \le j \le i + r]$

• Minimum Spanning Trees (Link Problem)

- Let *G* an unweighted complete graph with *n* vertices.
- Problem: Finding the subgraph $H_{l,n}$ of G (not necessarily induced) with n vertices that are l-connected and has the fewest possible edges denoted as $f(l,n): f(l,n) \leq \left[\frac{l \cdot n}{2}\right]$).
- <u>The algorithm has three cases:</u>
 - **1.** l even (l = 2r).

The graph $H_{2r,n}$ has nodes 0, 1, 2, ..., n-1 and two vertices i and j are adjacent if they differ at most $r \pmod{n}$ $[i - r \le j \le i + r]$

2. l odd (l = 2r + 1), n even.

Graph $H_{2r+1,n}$ is constructed (the previous relationship applies), from the graph $H_{2r,n}$ by adding the adjacent edges on the vertices i and i + n / 2, for $1 \le i \le n / 2$.

• Minimum Spanning Trees (Link Problem)

- Let *G* an unweighted complete graph with *n* vertices.
- Problem: Finding the subgraph $H_{l,n}$ of G (not necessarily induced) with n vertices that are l-connected and has the fewest possible edges denoted as $f(l,n): f(l,n) \leq \left[\frac{l \cdot n}{2}\right]$).
- <u>The algorithm has three cases:</u>
 - **1.** l even (l = 2r).

The graph $H_{2r,n}$ has nodes 0, 1, 2, ..., n-1 and two vertices i and j are adjacent if they differ at most $r \pmod{n}$ $[i - r \le j \le i + r]$

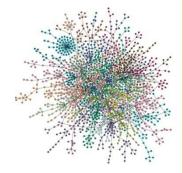
2. l odd (l = 2r + 1), n even.

Graph $H_{2r+1,n}$ is constructed (the previous relationship applies), from the graph $H_{2r,n}$ by adding the adjacent edges on the vertices i and i + n/2, for $1 \le i \le n/2$.

3. l odd (l = 2r + 1), n odd.

Graph $H_{2r+1,n}$ is constructed (the previous relationship applies), from the graph $H_{2r,n}$ by connecting vertex 0 with vertices (n-1)/2 and (n + 1)/2 and vertex *i* with vertex i + (n + 1)/2, for $1 \le i \le$ (n-1)/2.

50

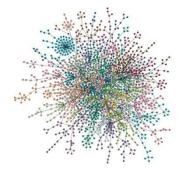


• Minimum Spanning Trees (Link Problem)

• Theorem 10 (Harary, 1962):

The graph $H_{l,n}$ is *l*-connected.

- Focuses in the case of l = 2r. We will prove by contradiction that in this graph there does not exist vertex cut set of less than 2r vertices.
- Let us assume that V' is a vertex cut set: |V'| < 2r. Let that I and j are two vertices that belong to different components of $H_{2r,n} V'$.
- Let the two vertex sets $S = \{I, i + 1, ..., j 1, j\}$ and $T = \{j, j + 1, ..., i 1, i\}$, where the addition is achieved through modulo. Since |V'| < 2r, without loss of generality, we can assume that $|V \cap S| < r$.
- Obviously there does exist a sequence of discrete vertices in the set S V' starting from i and finishing to j, where the difference of two consecutive vertices is at most r.



• Minimum Spanning Trees (Link Problem)

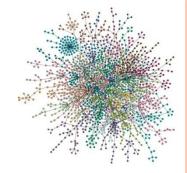
• Theorem 10 (Harary, 1962):

The graph $H_{l,n}$ is *l*-connected.

• This sequence is a path from *i* to *j* in the graph $H_{2r,n} - V'$, that is a contradiction. Thus, the graph $H_{2r,n}$ is 2*r*-connected. Similarly, we can proceed in the case of l = 2r + 1.

• It is easy to see that
$$|E(H_{l,n})| = \left|\frac{l \cdot n}{2}\right|$$

- From the Theorem it holds that: $f(l,n) \leq \left[\frac{l \cdot n}{2}\right]$ and from the previous relation (i.e., $f(l,n) \leq \left[\frac{l \cdot n}{2}\right]$) it is implied that $f(l,n) = \left[\frac{l \cdot n}{2}\right]$
- Additionally from Theorem 5, it also holds that this graph is *l*-connected regarding its edges. So, if we denote with g(l,n) the minimum number of edges in an *l*-connected on edges graph of order *n*, then for 1 < l < n it holds that $h(l,n) = \left\lfloor \frac{l \cdot n}{2} \right\rfloor$

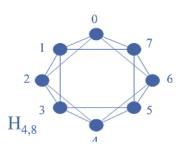


• Minimum Spanning Trees (Link Problem)

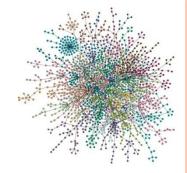
• Theorem 10 (Harary, 1962):

The graph $H_{l,n}$ is *l*-connected.

o <u>Example</u>



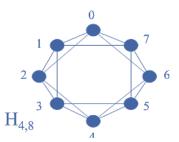
 $l \text{ even } (l = 4) \implies r = 2 \text{ and } n = 8$ The graph $H_{4,8}$ has vertices 0, 1, 2, ..., 7 and two vertices i and j are adjacent if they differ by a maximum of $r \pmod{8}$. $(0.1) \in E$ because $|0 - 1| \leq 2$ $(0.2) \in E$ because $|0 - 2| \leq 2$ $(0.3) \in E$ because $|0 - 3| \leq 2$ $(0.6) \in E$ because $|0 - 6| \leq 2 \pmod{8}$ $(0.7) \in E$ because $|0 - 7| \leq 2 \pmod{8}$

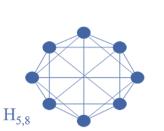


• Minimum Spanning Trees (Link Problem)

• Theorem 10 (Harary, 1962):

The graph $H_{l,n}$ is *l*-connected.





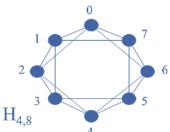
l even $(l = 4) \implies r = 2$ and n = 8The graph $H_{4,8}$ has vertices 0, 1, 2, ..., 7 and two vertices *i* and *j* are adjacent if they differ by a maximum of $r \pmod{8}$. $(0.1) \in E$ because $|0 - 1| \leq 2$ $(0.2) \in E$ because $|0 - 2| \leq 2$ $(0.3) \in E$ because $|0 - 3| \leq 2$ $(0.6) \in E$ because $|0 - 6| \leq 2 \pmod{8}$ $(0.7) \in E$ because $|0 - 7| \leq 2 \pmod{8}$

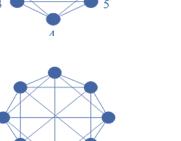
l odd (l = 2r + 1), n odd : As before, vertices i and i + n/2 are also joined, for $1 \le i \le n/2$.

• Minimum Spanning Trees (Link Problem)

• Theorem 10 (Harary, 1962):

The graph $H_{l,n}$ is *l*-connected.





H_{5.8}

 $l \text{ even } (l = 4) \implies r = 2 \text{ and } n = 8$ The graph $H_{4,8}$ has vertices 0, 1, 2, ..., 7 and two vertices i and j are adjacent if they differ by a maximum of $r \pmod{8}$. $(0.1) \in E$ because $|0 - 1| \leq 2$ $(0.2) \in E$ because $|0 - 2| \leq 2$ $(0.3) \in E$ because $|0 - 3| \leq 2$ $(0.6) \in E$ because $|0 - 6| \leq 2 \pmod{8}$ $(0.7) \in E$ because $|0 - 7| \leq 2 \pmod{8}$

l odd (l = 2r + 1), n odd : As before, vertices i and i + n/2 are also joined, for $1 \le i \le n/2$.

 $l \text{ odd } (l = 2r + 1), n \text{ even: As before, vertex 0 is also joined by } (n-1)/2 \text{ and } (n + 1)/2 \text{ and vertex } i \text{ with vertex } i + (n + 1)/2, \text{ for } 1 \le i \le (n-1)/2.$

55